Home   |   Product Search   |   Site Map   |   Checkout   |   Track Your Order
About Model Rockets
About Model Rockets

Flying model rockets is a relatively safe and inexpensive way for students to learn the basics of forces and the response of a vehicle to external forces. Like an airplane, a model rocket is subjected to the forces of weight, thrust, and aerodynamics during its flight.

On this slide we show the parts of a single stage model rocket. We have laid the rocket on its side and cut a hole in the body tube so that we can see what is inside. Beginning at the far right, the body of the rocket is a green cardboard tube with black fins attached at the rear. The fins can be made of either plastic or balsa wood and are used to provide stability during flight. Model rockets use small, pre-packaged, solid fuel engines The engine is used only once, and then is replaced with a new engine for the next flight.

Engines come in a variety of sizes and can be purchased at hobby stores and at some toy stores. The thrust of the engine is transmitted to the body of the rocket through the engine mount. This part is fixed to the rocket and can be made of heavy cardboard or wood. There is a hole through the engine mount to allow the ejection charge of the engine to pressurize the body tube at the end of the coasting phase and eject the nose cone and the recovery system. Recovery wadding is inserted between the engine mount and the recovery system to prevent the hot gas of the ejection charge from damaging the recovery system. The recovery wadding is sold with the engine.

The recovery system consists of a parachute (or a streamer) and some lines to connect the parachute to the nose cone. Parachutes and streamers are made of thin sheets of plastic.

The nose cone can be made of balsa wood, or plastic, and may be either solid or hollow. The nose cone is inserted into the body tube before flight. An elastic shock cord is connected to both the body tube and the nose cone and is used to keep all the parts of the rocket together during recovery. The launch lugs are small tubes (straws) which are attached to the body tube.

The launch rail is inserted through these tubes to provide stability to the rocket during launch.


Flying model rockets is a relatively safe and inexpensive way for students to learn the basics of forces and the response of vehicles to external forces. Like an airplane in flight, a model rocket is subjected to the forces of weight, thrust, and the aerodynamic forces, lift and drag. The relative magnitude and direction of the forces determines the flight trajectory of the rocket.

On this slide we show the events in the flight of a single stage model rocket. Throughout the flight, the weight of a model rocket is fairly constant; only a small amount of solid propellant is burned relative to the weight of the rest of the rocket. This is very different from full scale rockets in which the propellant weight is a large portion of the vehicle weight. At launch , the thrust of the rocket engine is greater than the weight of the rocket and the net force accelerates the rocket away from the pad. Unlike full scale rockets, model rockets rely on aerodynamics for stability.

During launch, the velocity is too small to provide sufficient stability, so a launch rail is used. Leaving the pad, the rocket begins a powered ascent. Thrust is still greater than weight, and the aerodynamic forces of lift and drag now act on the rocket. When the rocket runs out of fuel, it enters a coasting flight. The vehicle slows down under the action of the weight and drag since there is no longer any thrust present. The rocket eventually reaches some maximum altitude which you can measure using some simple length and angle measurements and trigonometry. The rocket then begins to fall back to earth under the power of gravity. While the rocket has been coasting, a delay "charge" has been slowly burning in the rocket engine. It produces no thrust, but may produce a small streamer of smoke which makes the rocket more easily visible from the ground.

At the end of the delay charge, an ejection charge is ignited which pressurizes the body tube, blows the nose cap off, and deploys the parachute. The rocket then begins a slow descent under parachute to a recovery. The forces at work here are the weight of the vehicle and the drag of the parachute. After recovering the rocket, you can replace the engine and fly again.

On the graphic, we show the flight path as a large arc through the sky. Ideally, the flight path would be straight up and down; this provides the highest maximum altitude. But model rockets often turn into the wind during powered flight because of an effect called weather cocking. The effect is the result of aerodynamic forces on the rocket and cause the maximum altitude to be slightly less than the optimum.


For all international order please email for S&H fees - Celestron Products can only be shipped within the USA
Orion  ·  Telescopes  ·  Binoculars  ·  Spotting Scopes  ·  Microscopes  ·  Accessories  ·  Observatories  ·  Astronomy Clubs  ·  Calendar of Events  ·  Big Bad Rockets  ·  About Us  ·  Contact

Astro Stuff
1001 East Main Street
Russellville, Arkansas 72801
(501)-529-9299 or toll free (877)-739-2787

All Celestron products are designed and intended for those 14 years of age and older. 

PayPal Verified

Site development by Brian Beach

Copyright © 1997-2013 Astro Stuff All rights reserved